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Scalarization Approaches for Four Objectives
Optimization Problems: A Case Study

Jannatul Ferdous1, M. M. Rizvi2

Abstract 
We  extend  the  algorithms  introduced  by  Burachik  et  al.  to  approximate  solutions  
to  four  objectives  optimization  problems.  Efficient  scalarization  approaches  are  
considered  to  design  the  algorithms  and  implement  these  algorithms  for                 
multiobjective  mixed-integer programming  problems.  We  show  that  algorithms  
with  the  weighted-constraint  scalarization  approach efficiently  solve  the  problem  
even  if  the  set  of  answers  is  discrete  or  disconnected.  We  test  the efficiency  of  
the  algorithms  for  a  four  objective  rocket  injector  design  problem.
 
Keywords: Multiple  objective  programming,  Mixed  integer  problems,  
Scalarization approaches,  Pareto  fronts,  Numerical  techniques.

1. Introduction
There are numerous conflicting objectives involved in multi-objective                                          
optimization problems whereby enhancing one criterion will reduce the value 
of others, leading to a exchange-off among answers. Therefore, any model that 
incorporates multiple objectives with continuous and discrete phenomena 
involves the consideration of multi-objective mixed-integer programming 
(MOMIP). MOMIP has many real-life applications, including problems in the 
fields of mining, engineering, and finance. However, as far as we know, very 
few algorithms (Antunes, Alves & Climaco , 2016; Belotti, Soylu & Wiecek, 2013; 
Przybylski, Gandibleux & Ehrgott, 2010; Pettersson & Ozlen, 2017) devised for 
MOMIP consider more than three objectives. Two such algorithms were 
presented in (Burachik, Kaya & Rizvi, 2014; Mueller-Gritschneder, Graeb & 
Schlichtmann, 2009) and tested for integer and mixed-integer programming 
problems. One of the reasons for not having enough literature for three and 
four objective cases is that the feasible set is not convex and might even be 
disconnected if the variables are integer or mixed-integer. This poses difficulties 
for the scalarization techniques to approximate the Pareto front.
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In this paper, we analyse algorithms for four-objective mixed integer problems 
for approximating Pareto points. It is desirable that these algorithms should 
have the following practical attributes: (a) The method should approximate all 
discrete and continuous Pareto points when the problem has mixed-integer 
variables. This is an essential characteristic as many real-world applications 
require the consideration of both discrete and continuous variables (such as 
production levels and fixed charges).

(b) The method should generate the Pareto points in reasonable computational 
time. This is an important attribute as solving each scalarization problem can be 
very costly.

In this paper, we extend the Burachik et al. algorithm which is used to solve the 
rocket injector mixed-integer design problem. First, we make constraints more 
complicated by partitioning the hydrogen flow angle   
into six equal sections, whereas in the Burachik et al., the author considered the 
variable into four segments                                               Hence, the problem turns into 
a more challenging mixed-integer problem, which is tricky to solve. To solve 
this problem, we needed to modify the algorithms for the proposed new set of 
constraints and the associated coding in MATLAB. Moreover, the algorithm 
used to implement the Pascaloti approach to approximate the Pareto front is a 
novel work in this analysis.

2.  Preliminaries
In this segment, we deal the key notions, terminologies, and ideas which can be 
used in our analysis. Those are popular notation and devices for multiobjective 
optimization, and we are using the classic notation here in the literature 
(Chankong & Haimes, 1983; Miettinen, 1999). Let    be the n-dimension                
Euclidean area. Let it be a set of nonnegative actual values. A set of numbers 
and strictly high quality numbers are denoted by      and          respectively. 
Define                   belongs to    , the multiobjective optimization Problem (P) is 
difined as follows.

subject to

where                                                and     is about of all integer numbers, and the 
functions                                                                and



155

Premier Critical Perspective  I  Vol. 5, Issue 2, May 2022  I  153-164

are defined in    ssume that the capabilities    are bounded under at the 
constraint set    with a recognized smaller bound. We require it to write the 
condition as follows.

The solutions of Problem (P) are called efficient points (Burachik et al., 2014; Yu,
1985), or Pareto points (Miettinen, 1999). A more general concept of solution of 
(P) is the one of a weak efficient point. We use the following standard                  
definitions to derive efficient points and weak efficient points.

Definition 2.1 (Chankong & Haimes, 1983 ; Miettinen, 1999)
(i) A point           is called an efficient for Problem (P) if and only if there exists 
no    in      and             such that

(ii) A point           is called a weak efficient for Problem (P) if and only if there 
exists no x belongs to     such that                             holds. Throughout the paper, we 
express weak efficient points of Problem (P) as WE(P).

Next, we introduce a reference vector, called an emphutopia vector. Utopia 
vectors are exactly superior to any efficiency point defined as.

Definition 2.2   Let,                           where              for all 
If        is the optimal value of the optimization problem

for                   then               is called a utopia vector of problem (P).

3. Classical Scalarization Approaches
Two scalarization techniques are recalled in this section. These are known as the 
Pascoletti-Serafini approach and the Weighted-Constraint approach. The 
former approach is popular when             (no integer variable). We also recall 
here the weighted-constraint approach this is green in approximating Pareto 
points while the front is disconnected. Even though these techniques are 
known, for the ease of the reader we supply right here a quick description. For 
extra information on these techniques, (Burachik, Kaya & Rizvi, 2017) and         
references therein.
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Sketch a set of valid weights and

The Pascoletti-Serafini approach: The parameter-based scalarization approach, 
introduced by Pascoletti and Serafini (Pascoletti & Serafini, 1984) is widely used 
for approximating Pareto points in the front. This method is also referred to as 
goal-attainment method (Miettinen, 1999 ; Dutta & Kaya, 2011 ; Collette & 
Siarry, 2004). Let        be chosen from          and                                                                      the 
scalarization is stated as follows.

where      and the variable and   is utopia vector in question (P). In                     
(Eichfelder, 2008), it’s miles proved that each answer of Problem (PS) were 
weak and efficient coefficient used in reverse to generate an approximation of. 
in use previous Pareto.

Weighted Constraint Approach: One of the most efficient methods for                     
approximating weak efficient solutions for disconnected Pareto front is the 
Weighted-Constraint approach. In this method, one of the    targets is consider 
for minimization and uses the other           weighted goals for constraints: The 
main advantage of this method, illustrated in (Burachik et al., 2014), is that it is 
able to generate Pareto points of nonconvex issues with separate Parate fronts 
and separate executable sets. The math version of the problem is,

General results can be found in (Burachik et al., 2014, Theorem  3.1), based on 
the fact that for fixed     is in      the solution of         for all                             is a weakly          
efficient point. This means that if the solution of each   sub-problems is the 
same, then the solution is a weak green factor. On the other hand, if the answers 
are exceptional, a assessment is made among answers to differentiate the ruled 
factors from the true solutions. The proposition below plays a crucial position 
inside the weighted-constraint technique. We use it in the Algorithms given in 
(Burachik, Kaya & Rizvi, 2021) for removing dominated points. For the                       
convenience of the reader, we recall it below.
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Suppose the solution set of Problem            as

 solves

The following proposition is recalled from (Burachik et al., 2014, Proposition 
3.3).

Proposition 3.1  Let                   such that                                            Assume that, for 
a few                                             such that                                                                 was

Then

4. Algorithm
Our analysis uses two grid technology strategies to design the algorithms for 
approximating Pareto factors. In this paper, we reported only the results 
obtained by SBG grids as CHIM failed to produce some parts of the Pareto front 
of rocket injector design problem. The reader can see the geometric                            
interpretation of these grid generation techniques in (Burachik et al., 2017, 
Sections 1,2 ; Burachik et al., 2014).

Individual Minimum Convex Hull  (IMCH): IMCH grid era technique become 
delivered with the aid of Das and Dennis (Das & Dennis, 1998).This technique 
was employed in the proposed Normal Boundary Intersection method (NBI) in 
(Das & Dennis, 1998), which is possibly the most popular approach for                
approximating the Pareto front. In this technique, the minimum values of every 
goal function are taken, and then the convex hull of these man or woman 
minima are produced.

The Sequential Boundary Generation (SBG): SBG became proposed by                   
Mueller-Gritschneder et al (Mueller-Gritschneder et al., 2009). We check in our 
experiments that the SBG works while the IMCH mesh cannot generate some 
parts of the Pareto the front. The sequential SBG technique builds the Pareto 
before the trouble. Construction of Pareto front by SBG method requires solving 
additional linear programming issues. As a result, it needs greater                         
computational time than the IMCH approach. Detailed descriptions of this grid 
era technique, along with their geometric depictions, can be found in (Burachik 
et al., 2017, Sections 1.2 ; Burachik et al., 2014). However, for the completeness 
of the paper, we recall these geometric interpretations below.
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Figure 1 illustrates the construction of SBG grid for three objectives case. First 
the individual minima are approximated by minimizing              and       separately. 
Then the Pareto front of two-objective subproblems                             and 
are computed. The combination of arbitrary Pareto fronts of these subproblems 
provides a distinct boundary of the real Pareto front. Next, the grid of the 
weights of the interior part of the boundary is calculated by solving a linear 
programming problem. In the final step, Pareto front of the interior part is 
constructed by minimizing

In the algorithms we use the weighted-constraint scalarization (Problem (P             
            and the Pascoletti-Serafini scalarization (Problem (PS)).

4.1 A four-objective set of rules: the use of the SBG grid
The description of the four-goal set of rules is given in (Burachik et al., 2021,              
Appendix A)  This analysis is the extension of Algorithm given in (Burachik et al., 
2021, Appendix A) (with the SBG grid) considering hydrogen flow angles
                                                    of the rocket injector design problem. Note that the IMCH 
grid generation technique does not work for the rocket injector layout issues (stated 
in Section 5.1) due to the complex pareto boundaries in front of the issue. To solve 
this problem, one needs to

Figure 1: (Burachik et al., 2017, Figure~2) SBG communication network. The 
Corners of the small circles indicate the maximum value of the person, the 
circles indicate the Pareto boundary coefficients, and the interval coefficients of 
the grid are displayed.

use SBG grid generation. We use the scalarization approaches             and (PS) in 
the algorithm.
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The Pascoletti-Serafini approach and the Weighted Constraint Approach are 
used in the algorithm to approximate Pareto fronts of the rocket injector design 
problem. In this section we presented algorithms designed to write code in 
MATLAB and solve the problem. Description of the algorithm-steps are as 
follows.

Step 2 of Algorithms: All four objectives are minimized individually subject to 
the constraints given in rocket injector design problem presented in Section 5.1.

Step 3 of Algorithms: These individual optimum solutions are used to form 
weighted grids which are used for both Pascoletti-Serafini and Weighted           
Constraint Approaches. Each grid point corresponds to a weight vector which 
is in

Step 4  of Algorithms: Four sub-problems are solved at each grid point to                 
generate Pareto points. In this step we calculate efficient and weak efficient 
points based on both scalarization properties.

The rocket injector problem typically encountered with the disconnected Pareto 
fronts. Therefore, effcient algorithms are required to program the problem in 
MATLAB, and appropriate solver are used to approximate the Pareto points.

Step 1  (Input parameters)
Set all parameters that introduced in the rocket injector design problem.

Step 2  (Calculate optimum point of individual objective function)
Find optimum solution of                                 subject to the constraints of the 
rocket injection problem introduced in Section 5.1, that provide the solutions
                                                           respectively.

Step 3  (Generate weighted parameters)
Weighted grids are created in this step. We follow the same ways to generate 
grids as introduced in (Burachik et al., 2017, Step 3 of Algorithm 3). Find x  that 
solves auxiliary problems                                                                           for some
and find     that solves

Step 4  Choose                                                               which generated from Step 3.
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Case: I  Implemented Weighted Constraint Approach
(a)  Find                                  that solves Problems

(b)  Determine weak efficient points :
(i)  If                                        then set              for some
(an efficient point) and record the points.

(ii)  If                                      does not hold, then, any dominated point is discarded 
by comparing the above four solutions.
Record non dominated points.

Case: II  Implemented Pascoletti-Serafini (PS)

(a)  Find                                  that solves Problem (PS), for all

(b)  Determine weak efficient points and then any dominated point is discarded 
by comparing the above solutions.
Record the non dominated points.

Step 5 (Output)
All recorded points are Pareto points of the rocket injector design problem.

Codes are written in MATLAB. The range of solvers are tested in Steps 3 and 
4(a), these include smooth and non-smooth solvers such as fmincon with 
sequential quadratic programming algorithm, SCIP and SolvOpt.

5.  Numerical Results
This section tests and compares four objective algorithms for the rocket injector 
layout issues. We aim to understand the algorithm’s capacity to approximate 
the Pareto points when two well-known scalarization approaches are                         
considered. The assignment of approximating the Pareto factors is especially 
difficult for four-goal instances.

We applied the set of rules and modelled the rocket injector problem using 
MATLAB. We have used BARON and SCIP in solving the scalarized integer 
issues with default alternatives. Within SBG Lattice technology , MATLAB’s 
linear programming solver is used, with standard alternatives to address                   
related linear programming (LP) issues. The calculation was performed on a 
Dell Core i7 laptop with 16 GB RAM. 
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5.1   Application to rocket injector design
Liquid Rocket Injector layout trouble turned into formerly analyzed with           
multiple criteria objectives in (Goel, Vaidyanathan, Haftka, Shyy, Queipo & 
Tucker, 2007; Vaidyanathan, Tucker, Papila & Shyy, 2004). Two primary               
objectives are related with the injector design, one is the performance                    
improvement of the injector and another is its survivability. The injector                
performance is enhanced through the ejector chamber’s shaft life while the 
injector’s life is related to the thermal element within the ejector chamber. For 
version and the injector layout visual representation, invites the reader to (Goel 
et al., 2007). There are conflicting interaction: high temperatures enhance the 
overall performance of the injector and shorten the service life of the                   
component. Four design variables have been introduced in (Goel et al., 2007).to 
build a mathematical version of the rocket injector layout hassle. The modified 
rocket injector layout hassle is taken into consideration as a combined integer 
multiobjective optimization hassle defined as follows.
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where                           are hydrogen go with the flow attitude, oxidizer submit 
tip thickness, decreases when admiring for the baseline cross-sectional region 
of the tube sporting oxygen, and increases with

Figure  2: Pareto Fronts for       and PS.

appreciate to the baseline go-segment region of the tube sporting hydrogen, 
respectively.

In our experiments, we impose a new equality constraint                    and an 
integer variable       which control the hydrogen flow angle         to fit in a set of 
angles. In our test, we optimize the rocket injector design problem for                   
considering hydrogen flow angles

Four goal capabilities are identified and indexed in (Goel et al., 2007) as:                              
                                       and             represents face temperature, tip temperature,      
combustion length, and wall temperature, respectively.

We have used Algorithms given in (Burachik et al., 2021) ,which implements the 
weighted-constraint scalarization and Pascoletti-Serafini approach with the 
SBG grid in obtaining 4D approximation of the Pareto front. We compare the 
results obtained for both scalarization approaches when mixed-integer case is 
considered. Select prediction display                                                    in the                              
-spaces to compare the solutions found for mixed-integer variables that are 
shown in Figures 2(a) and (b), respectively.
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Figure 2(b) shows the Pareto projection front into space           (PS) approach 
approximated 10025 points including 85235 Pareto point. The elapsed CPU 
time was about 65 hours. On the other hand, the prediction approximation of 
Figure 2(a) obtained 90,000 Pareto points for continuous variables in 55 hours 
CPU time as reported in (Burachik et al., 2017) .Note that solving mixed integer 
problems required more computer memory and more CPU time. We have used 
BARON and SCIP in Algorithm 7 to solve subproblems as these solvers are 
quite efficient for dealing with non-linear mixed integer problems.

6  Conclusion
In this article, we implemented an algorithm that was added to Burachik et al. 
for approximating the Pareto points of multiobjective mixed-integer                       
programming problems. Both CHIM and SBG grids were used in the                         
algorithms. We compared both results using the same algorithms with the same 
number of grids. Our analysis shows that algorithms used the weighted-         
constraint scalarization approach, which is more efficient than the                             
Pascoletti-Serafini approach in terms of computational time. It has also been 
shown that the Pareto fronts obtained by weighted-constraint scalarization 
approach approximated a reasonable Pareto front compared to the                                       
Pascoletti-Serafini approach.
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