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Space-Time Curvature Singularities in
Classical Cosmology Due to Gravitational Collapse

Dr. Haradhan Kumar Mohajan®

Abstract

This article takes an attempt to analyze space-time singularity within the black hole
region. If a star is weightier than the multiple times of mass of the sun, it might suffer
a boundless gravitational collapse without attaining any stationary state. The
ultimate result of gravitational collapse of a heavier star must essentially be a black
hole. Consequently, space-time singularity must be secreted within the black hole area
and pivotal message from the singularity cannot be reached to an observer who is
waiting outside of black hole or may stay at infinity. This situation faces when the star
has finished its internal nuclear fuel that is used to support the external pressure
against the interior dragging gravitational forces. The Schwarzschild metric
represents a static and stationary exact solution of the Einstein’s field equation. It has
two singularities at r=0 and at r =2m , where r =0 is a true physical singularity,
and the event horizon r=2m is an artificial singularity. The coordinate singularity
at r=2m can be removed by the use of Kruskal-Szekeres extension, and the genuine
space-time singularity at r =0 which is concealed within the event horizon at r <2m
cannot be removed anyway. Again in Friedmann, Robertson-Walker (FRW) model
there presents an unavoidable curvature singularity at ¢ =0 which cannot be removed
by any coordinate conversion. At this situation, the scale factor S(t) also disappears
and all materials are crumpled to null size owing to endless gravitational tidal force.
In this paper an effort has been arranged to discuss the curvature space-time
singularities in some details.

Key Words: Space-time Singularity; Coordinate Singularity; Kruskal-
Szekeres Extension; Big Bang; Black Hole.

1. Introduction

Space-time singularity is a point that lies at the center of a black hole where
gravitational forces become very large, density becomes infinite, the volume of
the object becomes zero, and space-time entity destroys. In singularity, the
geodesics become incomplete. As a result, physical equations work no more to
predict what has happened in the singularity (Clarke, 1993; Mohajan, 2013a).
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Einstein’s field equation in the presence of gravitating mass can be presented as
(Mohajan, 2013a);
1 872G

Ry = gR=——"T" (1.1)

where ¢=3x10" m/s is the velocity of light and G =6.673x10"'m’kg™'s™ is
the Newtonian gravitational constant. Here T is the energy-momentum tensor,
Rl.j is Ricci tensor, and R is Ricci scalar. In the absence of matter, i.e., for empty
space, Z/ =T =0, hence (1.1) becomes,

R, =0, (1.2)
Equation (1.2) is called Einstein’s law of gravitation in matter free world.

The Schwarzschild space-time metric (discuss later) is considered as one of the
most studied nontrivial asymptotically flat solution to the Einstein equation
(1.2). It is derived from the assumption that it does not change with time, and it
is spherically symmetric. It plays a fundamental role in explaining event
horizons and space-time singularities. It is significant for the explanation of a
non-rotating black hole. A black hole is a very dense region which strongly
bends the space-time around it due to its strong gravitation, and nothing can
escape from it. The Schwarzschild metric has a difficulty that it dependents on
the metric tensor g; (Mohajan, 2013b).

If the mass of a star surpasses Chandrasekhar limit (discuss later); the star has
run short its nuclear fuel then it must experience a boundless gravitational
breakdown without receiving any stationary state, and finally it creates a black
hole. Consequently, a space-time physical singularity is created (Mohajan,
2013c). If a star is heavier than five times of the mass of the sun, it must finish all
its nuclear fuel; as a result, achievement of stationary state is impossible for it.
Of course, if it can capable to throw away most of its materials by any method
during this evolution, that is supported by supernova explosion (Blumenthal et
al., 1984).

Again, in FRW model, the Einstein equation (1.1) implies that, ¢ +3P>0 always,
where P is the pressure and & is the total density. Then it may create a
space-time singularity at ¢ =0 , since S~ (t) — 0 att — 0, as the curvature
scalar, R = R”Rij. bows to infinity, where =0 is considered as the start of
the universe. Hence, in FRW model, a crucial curvature singularity is present at
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t =0 that cannot be removed completely by any coordinate alteration. At this
situation, the scale factor § (t) also disappears and all substances are wrinkled
to null volume for endless gravitational tidal force (Hawking & Ellis, 1973).

2. Schwarzschild Singularity

Schwarzschild metric is formed by considering a star that is far away from all
the gravitating bodies. It represents the geometry external to a spherically sym-
metric massive body, for example, a star. The Schwarzschild metric represents
a static and stationary exact solution of the Einstein’s field equation (Mohajan,
2013b). The distance between two infinitesimally separated points x' and
x' +dx" in the space-time is defined as;

ds® = g dx'dx’ (2.1)
where det (gy (x));é 0, g,=g;-
The static spherically symmetric metric is;
ds* = x(r)dr2 +rido’ — y(r)czdt2 (2.2)

where g,, =x, g,, =77, g3, =7r>sin’ 0, g,, = —yc’, the determinant,
g=—xyc’r'sin’ @ and g, =0 if i # j. In (2.2) we have used do” =d6” +sin’ 0 d§’.

Now we can write the Ricci tensors as,

R=2_Y Y X
11— 2
2y 4y” 4xy xr
o' 1
R, = ——+—-1
2xy 2x° x
R, =R, sin’ 0 (2.3)

From (1.2) we R; =0 and for i= j , ie, in the case of Einstein empty space, we
can write from (2.3);
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(2.4)
n 12 1t !
_y__i_y__l_x_yz_L:O.
2x 4xy 4x~  xr

-1
After a state forward calculation of (2.4) we find y=1- 2_m and x = (l - 2_mj .
r r

From (2.2) in (t, r,0, ¢) coordinates, the Schwarzschild metric for gravitating
mass m can be written as (Schwarzschild, 1916);

ds* =—hdt* + h™'dr* + r’do’ (2.5)

where h=1- 2_m, and do’ =d6&” +sin’ @ d¢” is the metric of a unit 2-sphere
of the area A4 =27z r? with space-time signature (-1, +1, +1, +1). Here » =2m
is the Schwarzschild radius, which is considered an event horizon of a black
hole, and m = Gc—jg, where G =6.673x% IO_Hrn}kzc:,r_ls_2 , is the Newtonian

gravitational constant, ¢ = 10°ms™

is the velocity of light, and M is the point
mass at the origin which gives rise to the Newtonian gravitational potential ¢ .
The range of timelike coordinate t is —o0 <7 <00 , and that of other spacelike
coordinates are 0 <r <oo, 0<@ <7, 0<@p<27. At r - o the gravitating
mass, m =0, and then (2.5) represents the Minkowski metric of flat space-time.
The coordinate r is restricted by the condition 7 =2m , as the Schwarzschild
metric (2.5) has an artificial singularity at 7 = 2m. The metric (2.5) also has a
true singularity at 7 = O . The two types of singularities arise in (2.5) because
one of the g Yor g, becomes discontinuous (Foster & Nightingale, 1995). So, it
represents regular patches at 0 <7 <2m or at 2m <r <oo. The region 0<r<2m
is interior to the event horizon 7 = 2m, ablack hole region, and at 2m<r <o

which is the region exterior to the event horizon. In the region 0 <r < 2m of the

Schwarzschild metric (2.5); if 7 —> 0, tidal forces become infinitely large, and
48m*

the Riemann curvature scalar (the Kretschmann scalar), K=R" R, =—— -0,
r

ij
where R;;, is the Riemann curvature tensor. This Kretschmann scalar shows
that the point 7 =0 is an infinitely dense point-mass real space-time physical
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singularity which is produced due to irresistible gravitational collapse. But at
the event horizon r =2m we find a coordinate singularity that can be detached
by the appropriate choice of the coordinates.

2.1 Extension of the Coordinate Singularity

The Schwarzschild space-time metric (2.5) can be extended by an appropriate
choice of coordinates at 7 = 2m to become analytic at the coordinate singularity.
It is a singularity that is formed for unsuitable selection of coordinates. The
maximal analytic extension of the metric (2.5) with 2m <r <o is called Kruskal-
Szekeres extension (Kruskal, 1960; Szekeres, 1960). For null geodesics we can
write ds=0, d0 =0, and d¢ =0, then (2.5) becomes,

dt = (1 —2—’”}_ dr. (2.6)

r

Integrating (2.6) we get,

t= i[r +2m ln(L - lﬂ + constant

m

t =+r +constant (2.7)

ro=r+2m ln(L — lj and
2m

d’;zl_z_m

dr r

. * . . . . . .
with —o0 <7 <o, where ‘+ sign indicates outside of the horizon, and '~ sign
. . . . . * . . .
indicates inside the horizon. Here » is the “tortoise coordinate”, as we move to

the Schwarzschild radius 7 =2m ; r changes more and more slowly with

r, as j’; —0 (Regge & Wheeler, 1957).
r

In equation (2.5), the advanced and retarded null coordinates have the direction
of null geodesics, and these can be represented by;

u=t—r, w=t+r (2.8)

where # — © and w— —o. In Schwarzschild space-time metric, the ingoing
and outgoing light rays are indeed at 45°. With a detail calculation and
dropping the asterisk (*) we can write (2.5) as;
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r (w—u)
ds® = —Z—me Tom e A’" dudw+r*do?. (2.9)
r

As r—2m relatesto u — o0 or w— —o0, we can introduce new coordinates
U and W respectively by; U = —ln(u /4m), and W = ln(w/ 4m) , where the
horizonis at u =4m,i.e.,at U =0 and at w=4m ie., at W =0.

Hence (2.9) becomes;

_ 32m?

r

ds’ e_%’” exp(eW _eU +W—U)dUdW+r2d0'2. (2.10)
From (2.10) we observe that singularity is absent at U =0 or ' =0 which agrees
with 7 =2m . Hence, the coordinate singularity » =2m is considered as being
regular points in disguise in the space-time manifold. Again, we consider a

w+U w-U

transformation by using 7T = and X =

then (2.10) becomes;

gs® — 32m’

¢ /om [exp(X +T)—exp(X —T)+2XdT? —dX? )+ r2do” (211

which is Kruskal-Szekeres form of Schwarzschild metric. Finally, the
transformation (t, r) to (T , X ) becomes;

X?-T?=-UW =—In(u/4m)In(w/4m) (2.12)

From (2.12), 7 >0 gives X’ —T? > —positive constant . The boundary of the
Kruskal-Szekeres extension (2.11) is given by the physical singularity at » =0,
which provides the two sheets of the hyperbola 72 — X = positive constant

and now we see that » = 2m is singularity free (Ashtekar, 2005).

2.2 Geometrical Properties of the Schwarzschild Manifold

The geometrical representation of the Schwarzschild metric is given by the
Kruskal diagram. It is divided into four portions (Figure 1). The maximal
domain covers two portions / und /'of the exterior portion 2m <r <o . The
portions 7 and /'are asymptotically flat and possess same characteristics.
Actually, there is no communication, even by light signals, between the

portions /and 1'.




Premier Critical Perspective | Vol. 6, Issue 1, April 2023 | 37-52

T
r = constant < 2m ?ingularity, r=0 «2m, t=+oco

t = consta
nstant > 2m
r = constaxt > 2m

r=constant<2m  Singuflarity, =0

Figure 1: Kruskal diagram represents the Kruskal-Szekeres extension of the
Schwarzschild metric. Each point on the figure indicates a 2-sphere.

The portion /' is another asymptotically flat universe on the other side of the
Schwarzschild ‘throat’. The interior portion II is called a black hole, and another
interior portion /' is called a white hole. An observer who is now present in the
portion /I’ of course originates from the singularity and must leave the portion
II' again will reach to the portion I (Misner et al., 2005). Any outgoing observer
from the portion I must travel to infinity. On the other hand, any ingoing
observer must cross the null line X =T, and enters in the portion II. When a
spectator falls into the portion II, a closed confined surface, cannot leave it, and
within a finite proper time the spectator must face the singularity at 7° - X’ =
positive constant The explanation for region r > 2m indicates to the portion I,
which is considered as the outer gravitational field of a collapsing body where
we always survive. Here the event horizon matches to the two lines X' =+T for
t— oo Curves of r=constant represent hyperbolas. In the region 7 >2m,
the hyperbolas fill the portions 7 and /' that are completely disconnected, and
for »>2m, they fill the other portions Il and II'. The boundary of the portion
II' is indicated by the past event horizon, on the other hand, the boundary of
the portion I is indicated by the future event horizon.

The portion I is the Schwarzschild area which is disconnected by the horizon
r>2m, from the portions Il and [I' The Eddington-Finkelstein coordinates (u, r),
capture the portions I and I, and (v, r) , capture the portions I and /' (Hawking
& Ellis, 1973). Any observers in the portions I and /' can receive signals from the
portion //" and send signals to the portion II.
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Future singularity r =0

" 7 = constant
I+ II +

i0 ~ i0

t = constant

I- Jig 7 = Ponstant I-

Past singularity r =0

Figure 2: A conformal representation of the Schwarzschild geometry.

If an observer follows future-directed null rays he will reach in the portion II,
for the following past-directed null rays he would reach the portion II'.
Of course, portion II', a part of space-time, from which observers can escape to
us, but we can never go back to there. The past singularity is indicated the start
of the universe. If an observers had travelled spacelike geodesics, he would
have been managed to the portion /'. The portion II is the black hole and if any
observer travels from the portion I into I, it is not possible for him to return the
portion II, and after a finite time must fall into the singularity at 7 =0 . We
display a conformal illustration of Figure 1 as Figure 2.

An observer who is situated in the portion /', can send signals in the portions
Il and II', and finally falls in the singularity 7 =0 at a finite proper time in the
past. Similarly, a spectator who is stayed in the portion II, can receive signals
from the portions I and 7', and obviously will face the singularity at » =0 ina
proper finite time in future. In the portions II and /', world lines with
r = constant are no longer remain timelike, but will be spacelike for » <2m.

3. Friedmann, Robertson-Walker (FRW) Singularity

The FRW models are formed on the basis of the homogeneity and isotropy of
the universe. The non-static spherically symmetric line element in the moving
coordinate system is presented by,

ds* =dt* — e”("”)(a’r2 + rzdaz) (3.1)

where do’ =d0’ +sin* 0 d¢’.
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If we write,
i (t)=e"""dr + r’do?)

3.2
di*(t,)=e "2)(dr +rzd0') (2)

The ratio of dl(t,) and dl(t,) is independent of space coordinates if and only if
,u(r,t) has the form,

plr,1)= 1 (r)+ (o). (3.3)
Then (3.2) becomes,
ds’ =dt’ — e-’((r)Jrg(’)(a’r2 + rde'Z). (3.4)
. . ou , Ou ) . , .
Now, we write, = 5, Y7 8_ , etc., by calculating surviving I'’s we write
v

the Ricci tensor Rl.j as;

Rll = f"+i_e#(lg+§g2j
r 2

4
" 12 ’ U 1 3 -2
22"’ f +— f f_e ~8+—-8 (3.5)
2 4
R, =sin’ 6R,,
3. 3.,
R,=—g+—
44 2g 4g
Rl.j=()ifl'¢j.

By using Ri = g"kRjk we get,

3 ’

Rlz— +_-2 —u H+_

Iy et (f r]

1 3 1 1 3

R2:R3:V2 _"_‘r__ ‘2_67/1 _ H+_ l2+_ ! 36

2 3 [2g 4g 2f 4f er (3.6)

3 3

R4:_..+_.2

4 2g 4g
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The Ricci scalar,

R=R =R +R+R,+R;
=3(§+g'2)—2e”(f”+%f’2 +gf’)~
r

Substituting these values in the Einstein’s field equation (1.1) we get,

8T, ZLR—Rf_A
2
:gﬁgz—e-”[lf'%gf'j—/\' (3.72)
4 4’

87T, = 8T, :lR—Rj - A
2

. 3 . — U 1 ” ,
:g+2g2—e’[5f +£j—/\- (3.70)
87T :%R—Rj—/\
:%gz —e“‘(.f”+%f’2 +%f’j—/\- (3:7¢)

8T =0 if i# j.

Further, the assumption of spherical isotropy of 3-spaces indicates that the
longitudinal and transverse stresses must be equal, i.e, T, =7, =7, . Hence,

(3.7) indicates,

1 !’
fr-=f" A (3.8)
2 r
Integrating (3.8) we get,
d v
4 _ klreé (3.9)
dr
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where k; is integration constant. Again integrating (3.9) we get,

2
o~k . (3.10)
2
(1 + rzj
4S8,
This may be written as,
P -2
IO I (3.11)
48,

where k=1, 0, -1.
Using (3.11), equation (3.4) can be written as,

g(t)
ﬁ(dl"z'FVde'Z). (312)
kr
1+

457

ds* =dt* -

This line element is known as RW line element, which can be expressed as,

2 (1)
ds* =drt -2 (4 + rdc?). (3.13)

In (t,r, 0,¢) coordinates the FRW line element (3.13) can be represented as
(Mohajan, 2013c);

2

2

ds® =—di* + Sz(z)[ dr

s -
—kr

where do? =d6* +sin* 0 d ¢2 . Here § (t) represents cosmic scale factor, and
k=+1, 0, -1. For k=0, the 3-space becomes flat and (3.14) indicates Einstein-de
Sitter static universe, when k=+1 and k =-1 the 3-space represents positive
and negative constant curvatures; that conglomerate the closed and open
Friedmann models, respectively (Figure 3). Form (3.14) we get;

p+3(p+p)%=0. (3.15)
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5(t) A k=-1
0
<+—Static Universe
1/ <41
Initial singularity Final singularity
S(t)—0 \ S(r—0
t=t, t=t t

Figure 3: Nature of the FRW model. In static universe, § (t) #0 att=0.

The energy-momentum tensor 7" can be written as;
T = gu'v’ (3.16)

where &, is the proper density of matter in the absence of pressure. A perfect
fluid is categorized by pressure P = P(xi ), then energy-momentum tensor can
be written as (Carroll, 2004);

77 =(g+ Pl'u’ — Pg". (3.17)

We consider the matter of the universe as an ideal fluid, then by (3.16) and
(3.17), also solving (3.14), we have;

% +47(s+3P)=0, and (3.18)
387 3k
5 —[87[/) —?J =0 (3.19)

where for convenient we have considered A =0.

We have three variables S, ¢, P but only two equations (3.18) and (3.19). So, one
additional equation is necessary to obtain the solution that can be presented by
the equation of state, P = P(g). If £>0 and P >0, then (3.18) indicates, §<0.
So, (3.19) provides, S = constant, and S>0 specifies expanding universe,
and §<0 designates contracting universe.
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American astronomer Edwin Hubble (1889-1953) observed the red-shifts of the
galaxies. He observed that galaxies are moving away from us with a velocity
proportional to their distances from us. From this observation he revealed that
the universe is expanding, which verifies the prediction of the general theory of
relativity. As the universe is expanding, so, S>0; by (3.18) and (3.19) we get,
§<0.Asa result, Sisa decreasing function, which indicates at earlier times the
universe must have expansion at a faster rate as compared to the present rate of
expansion. But, if the expansion would be constant rate at all times, i.e., at past,

(Ej =H,. (3.20)

at present, and in future, then,

S

Here H is considered as the Hubble constant. We have %< 0, S (to) >0 and

S(t,)

S ( ) >0, here t=¢, indicates present time. Hence, scale factor S (t) must be
0

concave downwards and ultimately S (t) touch the t-axis at a finite time 7 =17, in
future (Figure 4). This time is considered the big crunch, which is the end point
of the universe.

Hence, at 1 =0, we have;

5(0)=0. (3.21)
The event t =0 is the beginning of the universe. Also, for = t, ,i.e., at a finite
time in the future the universe will again face § (O) =0.Bothat =0 and 7=
the nature of the universe become § = 0. The past singularity at =0 is called
the “big bang”. Similarly, the future singularity at #=¢ is called the “big
crunch”.

4. Singularities Due to Gravitational Focusing

In all the stars, hydrogen is used as fuel, and after burn creates helium. In this
process the volume of the star contracts due to inward gravitational force. After
a certain period, contraction process will halt and it will achieve a long
stationary state due to the thermal and radiation pressures. The length of the
static state may be even billions of years, according to the initial mass of the star.
The mass of the sun is denoted by M, ~ 2 x 10% gm, if M is the mass of the
star, then if My <M ,, this period becomes more than 10%° years. On the other
hand, if M >10M , the burning period will be less than 2x107 years. This
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scenario indicates that the weightier stars burn out their nuclear fuel very
quickly than the lighters. After converting all hydrogen to helium during the
burning process collapse procedure cannot stop if the star is adequately
massive. Then thermonuclear reactions start and helium converts into carbon.
Indian scientist Subrahmanyan Chandrasekhar (1910-1995) introduced greatest
mass for a non-rotating star to attain a white dwarf stationary state as
(Chandrasekhar, 1983);

2
2
M, :1.4[-] M, (4.1)
H

where 1, is the constant mean molecular weight per electron. The extremum
mass for non-rotating white dwarf may be in 1.0M , —1.5M, , subject to the
conformation of matter, and for neutron stars the corresponding figure increase
to 1.3M , —2.7M , (Arnett & Bowers, 1977).

5. Black Hole Formation

A sufficiently massive star continues its contraction for gravitational force until
it reaches the space-time singularity. At this stage no equilibrium state is
possible and eventually creates a black hole, which covers the space-time
singularity. In the Schwarzschild metric, the region 7 <2m is considered as
trapped surface and no signal or particle come outside. Consequently, a black
hole is formed in that region. The hypersurface 7 = 2m is considered as the
“absolute event horizon” of the space-time [15]. At the singularity » =0, the
curvature and density become infinite and singularity becomes invisible to the
external observers (Joshi, 1996).

Event
hgrizon

Figure 4: The black hole structure.

After crossing region r =2m, the individual experiences as a “tidal force” and
realizes that he is forced to enter regions of much smaller r (Penrose, 1970). In an
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asymptotic flat space-time M, a black hole region is defined by (Figure 4);
B=M-J (1% (5.1)

which is closed in M, and the event horizon is confined in B. The boundary of B
in M, which is also considered as the event horizon as;

H=J 19ynM. (5.2)

6. Conclusions

In this study we have analyzed that the Schwarzschild solution plays an
important role for identifying and explaining event horizons, and space-time
singularities. There is a coordinate singularity at » = 2m which can be removed
by Kruskal-Szekeres maximal extension. But =0 is a real curvature
singularity that cannot be removed as like that of 7 =2m . In this study we have
discussed the Kruskal-Szekeres maximal extension to remove coordinate
singularity. On the other hand, in FRW model there was a real curvature
singularity in the past where # =0 and this is called big bang singularity.
By the mathematical procedure and physical interpretation, we observe that
there may arise a future curvature singularity in FRW model which we call big
crunch.
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