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(A.) Abstract: The basic field solutions for electrostatic field in free space can
be expressed in terms of a scalar potential function. The electrostatic field is
conservative everywhere. The total scalar potential at any arbitrary point, on the
other hand, is simply the scalar sum of the contributions produced by each of the
independent elemental source points. The differential elements of source charge
may consist of several types of contributions that range from volume, surface,
and line charge densities to point charges. Thus, a concrete expression can be
constructed for electrostatic field when the distribution of charges is known
throughout the space. A much more typical case arises when the static charge
distribution is known over some limited region of space only. Differential field
laws can be applied at all points within the region and thereby the conditions for
the mathematical acceptability of the static field can be established. Poisson'’s
equation expresses the condition of mathematical acceptability for electrostatic
potential in the regions where volume charge density is not zero. Laplace’s
equation, on the other hand, expresses the condition of mathematical
acceptability for electrostatic potential in all charge free regions. An
electrostatic problem involving linear, isotropic, and homogeneous dielectric
reduces, therefoie, to finding solutions of Laplace’s equation in each medium,
and joining the solutions in various media by means of boundary conditions.
Hence, it is needed for one to understand some mathematical charateristics of
Laplace’s equation in order to know exactly what information is necessary for a
solution of Poisson’s or Laplace’s equation.

(B.) Introduction: The elegance and beauty of Maxwell’s formulation of the
law of electromagnetism for source charge can quickly disappear in a cloud
of involved mathematical technique as soon as one attempts to determine the
fields produced by specific systems. It is an aim here, to highlight the most
common of the basic field solutions for the static field in the free space. Since
the static field E is constrained to be conservative, we know that we can
always express E in terms of a scalar potential function [Ref-5: p-47] ®:
E= Vo ... (1)

The total scalar potential at any arbitrary point P is simply the scalar sum of
the contributions d®, produced by each of the elemental source points dq,

that is,
S ch = (1/4n€0)jall charges(dqQ/rQP) s (2)

The differential elements of source charge dq may consist of several types of
contributions that range from volume, surface, and line charge densities to
point charges. Thus, for an arbitrary distribution of charge, the total
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electrostatic potential at point P is then simply the linear superposition of
each of the separate charge contributions, as given by-

= (1/4ney) [Iv(podvo/roe) + Is(ﬂodaQ/rQP) + Ji(Aodso/rap) + 2ka/rgp ---(3)

where, for simplicity of notation, the subscript P has been dropped from the
potential at point P. It is to be noted that ® is a function of the coordinates of
the point P alone. On the other hand, pg, Ng. Aq. and qx depend solely on the
coordinates of the point Q, while-

rop =[(xp — Xo)’ +(yp ~ Yo)’ (2o~ 20" ...(4)

is a symmetrical function of the coordinates of P and Q. We observe, in this
regard, that the differentiation involved in computing the potential gradient
must be carried out with respect to the coordinates of the point P, with the
coordinates of Q constant. Thus,

E= -Vp = -Vp[( 1/4“80)I(dqQ/er)] = (1/4J'|280)I[Vp( l/er)]dqQ siste (5)
And in the Cartesian form this becomes:

E=(1/4me0)[[v(padva/rorigrtsodac/roriorHi (Mods/Popiort Sk(@i/rop)igp
2.(6)

The above equation is the expression for electrostatic field when the
distribution of charges is known throughout the space.

A much more general case that arises when the static charge distribution is
known (over some limited region of space only) will now be considered. We
can apply differential field laws at all points within the region and thereby
can establish the conditions for the mathematical acceptability of E. We also
know that the static E must be conservative everywhere [Ref-5: p-47],

05.:7) V. x E =

and that it’s divergence in the presence of volume charge density p, is given
[Ref-5: p-46] at each point by-
- V.E=pleg ... (8)

where ¢, is the permittivity of vacuum. Thus equation (1) and (8) together
ives:

e Y E-. (V) =-V’®=pley = V’®=-p/gg ... (9)

where V? = V.V is known as the Laplacian operator and the above equation

is known as Poisson’s equation. If p = 0, eqn. (9) reduces.to V2@ = 0. This

relation known as Laplace’s equation, expresses the condition of
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mathematical acceptability for electrostatic potential in all charge-free
regions of space. An electrostatic problem involving linear, isotropic, and
homogeneous dielectrics reduces, therefore, to finding solutions of Laplace’s
equation in each medium, and joining the solutions in various media by
means of boundary conditions. Very often, however, exact solutions of
Laplace’e equation either can not be found or else take on forms too
unmanageable for simple analysis. It is necessary for one to understand some
(mathematical) attributes of Laplace’s equation in order to know exactly what
information is necessary for a solution of Poisson’s or Laplace’s equation.

(C.) A Maximum-Minimum Theorem: 4 function @ that satisfies
Laplace’s equation within a region V can attain neither a maximum nor a
minmum value within V, and thus @ must assure its largest and smallest
values in V on the surface S enclosing V.

This theorem [Ref-6: p-666, 726-744] can be proven by noticing that the second
partial derivatives of ® with respect to x, y, and z must all be positive at a
point where ® has a minimum, and must all be negative at a point where ®
has a maximum, as illustrated here for a two-dimensional potential. This,
however, is impossible, as because their sum must

Maximum
D(x.y) At

Saddle Pomt
<

m, Minimum

/ ’.\'

be equal to zero by Laplace’s equation. This theorem permits us to conclude
that the static E field must be equal to zero at all points within a charge-free
region completely enclosed by a current-free conductor. This follows from
the fact that the largest and the smallest values assumed by potential in such a
region must be equal, since the potential is forced to be constant on the
surface of an isolated conductor. Thus, with neither a maximum nor a
minimum allowed within the given volume and no variation at all on the
surrounding surface, the potential is constrained to be constant throughout the
entire region and E=-V® = (.

(D.) The Uniqueness Theorem: A second conclusion can be drawn from .the
lack of a maximum or minimum value of a solution of Laplace’s equation
within a charge-free region. Specifically, the electric field in any cfzarge—free
region is uniquely specified by the values assumed by the potential on the

@» suwrface enclosing the region.
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This follows from the fact that if there were two potential functions (P, and
®,) that satisfied Laplace’s equation within the region and that assumed the
same values on its surface, their difference would also satisfy Laplace’s
equation and would vanish on the surface. This suggests that the potential
within a charge-free region should be uniquely specified by the values
assumed on the surface S of the region by either the potential ® or by the
component of the current density to normal to S, that is J, = n.J, where n is
the unit vector normal to S. On the other hand, J = oE = -oV® within a
conductor (of conductivity o), so that J, is directly proportional to the
derivative of @ normal to S. That is, J, = -o( n.V®) = -o(ad/dn).

Thus, we must expect the potential within a charge-free region is also to be
uniquely specified by the values given for either ® or 9®/dn at each point on
the surface S that encloses the region. This is, indeed, the case. In fact, stated
more precisely, this conclusion forms the uniqueness theorem that is included
below, namely: ‘Any solution @ of Laplace's equation in a volume V is
uniquely specified when either the value of ® or d®/dn is given at all points
on the surface S enclosing V*.

To derive this uniqueness theorem, however, we need a relation known as .
Green’s theorem [Ref-2: p-628, 683; Ref-5: p-19; Ref-6: p-834]. It states that,
“Given an arbitrary scalar function ®@ which together with its gradient and
Laplacian is non-singular within a volume V and on the surface S enclosing
V, then-

[[@VD.da =], P e (10)

This theorem follows directly from the divergence of the product of ® and
Vo,
V(DPVD) = (VD.V D) + OV D WA G )

If we integrate both sides of eqn. (11) over the volume V and then apply
Gauss’s theorem, we arrive at the desired relation, that is,

[\V.(@VD)dv = [, (@VD).da=[( |V |>+ OV’D)dv ...(12)
We now observe that if the function & in equation (12) represents a solution
of Laplace’s equation, V2® = 0 at all points within V, eqn. (12) reduces to —
[@®/on)da=,|V®|*dv... (13)

since, (V®).da = (V®).nda = (0P/dn)da where n is the outward unit vector

normal to S. The left hand side of eqn. (13) vanishes whenever @ or d®/dn is
on the right

' side of eqn. (13) must then vanishes at all points of V. Then-
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VO =0..(14)°

-at all points in V with the result that ® must be constant throughout V. We

can conclude, therefore, that: “Any solution @ of Laplace’s equation must be
constant throughout a region V whenever either ® or its normal derivative
dD/on vanishes at all points on the surface S enclosing V.

Finally. to prove the uniqueness theorem, we need only to note that if there
were two different solutions @, and ®, of Laplace’s eqn. in V that possessed
the same values of either ® or 9®/dn at each point on the surface S enclosing
V, then their difference,

CI)=(I)|-Q)2 (15)

would also be a solution of Laplace’s equation that would have either ® or
d®/dn equal to zero at all points on S. It follows from eqn. (13) and (14) that
@ must be a constant throughout the volume V and, therefore, ®, and ®, can
differ at most by a constant C,

D, =9,+C (16)

We can conclude then that a solution of Laplace’s eqn. is uniquely specified
within a region V when either its value or value of (normal derivative) d®/dn
is given at all points on the surface S enclosing V.

It follows from eqn. (16) that the two electric fields derivable from @, and @,
must be identical at all points in V,
E =-V®,=-VO,=E, ..(17)

Thus, the uniqueness theorem also states that the electric field E derived from

a solution of Laplace’s eqn. within a region V is, uniquely specified when
either the value of (potential) ® or its normal derivative d®/dn’is given at all
points on the surface S enclosing V.

Thus, in addition to necessary information for solution of Laplace’s equation
we also know when to stop working. Once we find a solution that meets all of
the necessary boundary conditions required by the uniqueness theorem S, we
are assured of having the only (that is, the unique) solution. We need look no
further.

(E.) Solutions of Laplace’s Equation in Rectangular Coordinates: If the ~

- potential is a function of (3-D) rectangular coordinates, Laplace’s equation is

given [Ref-5: p-17] by-
V2D = §°®/ox> + & D/oy*+ 6°D/62 =0 ...(18)

Linear partial differential equations of this type are solvable by expressing
(electrostatic potential) @ as the product of the functions, each involving only
one of the three variables. In particular, on substituting-
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d(x.y.z) = XX)Y(¥)Z(2)...(19)

where X is a function of x alone, Y is a function of y alone, and Z is a
function of z alone, into Laplace’s equation and dividing by ®, we obtain-

(/X)EX/dx? + (1/Y)d Y /dy? + (1/2)dZ/dZ2 =0 ... (20)

It is clear from the above equation that if the sum of these terms is to be equal
to zero for all values of x,y,zeR, each of three terms must either be equal to
zero or, at best, a constant.

Case 1. Trivial Solutions: The simplest or “trivial” class of solutions of
Laplace’s equations in Cartesian coordinates can be found by setting each
term in eqn. (20) separately equal to zero,

d*X/dx? = 0; d*Y/dy?* =0; d°Z/dz* = 0 Pl 7

Each of three resulting second-order linear differential equations can readily
be integrated to yield the solutions:
X=A+Bx, Y=C+ Dy, Z=E+Fz
=:(22)

Where A, B, C, D, E, and F are arbitrary constants. We then arrive at the
family of trivial solutions of Laplace’s equation in Cartesian coordinates by
substituting eqn. (22) into eqn. (19):

®(x,y,z) = (A +Bx)(C + Dy)(E + Fz)...  (23)

This solution may be applied to the case where three conducting planes (xy,
yz, zx) intersect at right angles. If the three planes are all at the same
electrostatic potential then-

®d(x,y,z) = ACE + BDFxyz

(23A)

Case II. General Solutions: The general class of solutions of Laplace’s
equation in Cartesian coordinates follows from the setting of each of three
terms in eqn. (20) separately equal to a constant, subject only to the
restriction that the sum of the three constants must be equal to zero. Thus, we
have-

(1/X)d*X/dx" = [ (1/Y)d*Y/dy* = (1/2)d°Z/dz* =1 ..
K +K,? +K,? (24A.B,C)

where K, K, K.eR are arbitrary constants such that:

+K, 4K, 2K ,2 =0 ...(25)
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Each of the three second-order linear differential equations given by eqn. (24)
has well-known simple solutions. For X(x), for instance, we have-

X(x)=A[exp(ikx)]+B[exp(-kx)] or A'[Sin(kx)]+B[Cos(kex)]: for —k,
...(26)

for negative sign in eqn. (24A), and-

X(x)=C[exp(kx)]+D[exp(-k.x)] or C'[Sinh(k.x)]+D'[Cosh(kx)]; for +k
ek 2 T)

for the positive sign. Similar results apply to the other two functions Y and Z
with (k,y) and (k,z), respectively, replacing (k) in eqns. (26) and (27).

Nota Bene: exp(xik,x) = Cos(kyx) % iSin(kyx) and exp(xk«x) = Cosh(kx) =+
Sinh(kx)

The set of general solutions of Laplace’s equation in Cartesian coordinates is
then given by the product of X, Y, and Z as in eqn. (19). If no one of the
three constants k,, k,, and k, is zero, then appropriate solutions are:

D(x.y.2) = {exp(ika)} {exp(ik,y)} {exp(k,2)} 6 S0

in which the brace notation is intended to signify: exp(k.x)
Alexp(k,z)]+B[exp(-k,z)] with A and B constatnts; etc.

All of these solutions may be listed in compact form as the product of three
sets of five functions, one set for each of the three rectangular coordinates,

as:
® = X(x)Y(y)Z(z)={Sin, Cos, e*, Sinh, Cosh}kx{Sin, Cos, €°, Sinh,
Cosh}k,y{Sin, Cos, €%, Sinh, Cosh}k,z ...  (29)

where A, ki, ky, and k, are constants. Here terms of the form e* have been
omitted, since the physically realizable static fields must be real. Each of the
general solutions of the Laplace’s equation in Cartesian coordinates can now
be formed by simply taking the product of the constants A and one term from
each of the three brackets in eqn. (29), with k,x, k,y, and k,z as the respective

arguments, such that: 1k 2 :tkyz 1,2 =0 BT (30)

where the negative signs apply to the first two terms in each bracket, and
positive signs apply to the last three terms in each bracket.

To prove that the functions so taken from eqn. (29) are, in fact, solutions of
Laplace’s equation, wee need only to show that they satisfy Lalace’s
equation, we find that the second derivative of each of five terms in each
€@ bracket yields either k,-2¢ or -kad) (where j = x, y, or z), depending on
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whether the specific term chosen comes from the first two or the last three
terms in each bracket, respectively. Thus, we get-

VIO = FooxE + PRIy + 3067 = (2kJtk/ k)P = 0
=B31)

It then follows that eqn. (30) is both a necessary and a sufficient condition for
any of the non-zero functions included in eqn. (29) to be a solution of
Laplace’s equation.

(F.) Solutions of Laplace’s Equation in Cylindrical Coordinates:
Laplace’s equation in the cylindrical coordinates r', 0, z is [Re-5: p-52, 59]-

Vo = (1/0)@e0[@d/en] + (P08’ + &z = 0
=132

Separating by means of product functions,
@(r, 6, 2) = [RMI[OO)][Z(2)], ---(33).

we obtain,

H{d/dn)[r(dR/AN[HKP-R = | ¢0/d6™n’0 = [ d'Z/dz-K°Z = | (34A.B.C)
0 0 0

where K and n are the separation parameters. Eqn. (34A) is known as
Bessel’s equation, and its solutions are called Bessel functions. The character
of the solution will depend markedly on the sign of separation constant, Ee.,
on whether n and K are real or imaginary. If solutions are desired which are
single valued in azimuthal angle 6, then the solutions must be periodic in 6,
and n must be an integer. To solve, eqn. (34A) can be written as:

P(PR/dr)Fr(dR/dr)+(K2rP-n?)R=0, <> R"+(1/nR"+[K* - (n’/H)R =0

(39)

However, no integer restriction exists on the allowable values of K, indeed,
since K? can be any real constant, K can be any pure real number or any pure

imaginary number. If both K and n are zero, eqn. (35) has simple solution:
R(r) = a In(r) + b, n = k = 0 whereas if only k equals zero, R(®)= {r"}; k=0.

For k # 0, it is best to proceed by introducing the substitution variable (such
as) s = kr, which converts eqn. (35) to-

(®R/ds?) + (1/s)(dR/ds) + [1-(n*/s")[R =0 ... (36)

'.T?g cylindrical and rectangular coordinates are related in the way: x =r cos(f),.y =r
sin(0). c
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It is routine to check that this differential equation has a regular singular
point at zero, suggesting that we try Frobenius solution: :
R=Y"as™ ... (37)

Substituting (37) into (36) we get:

ao[Mh-1)+HA=n7]s™+a) [+ DA+ D] 300 {[(+R) (A= 1)+(+A)—n’ laj+aj.
}S'”

In thlS the co-efficient of each power of s must be zero. From the co-efficient
of s* we get the indicial equation: A* —n? =0, assuming a, # 0. This has roots
A =n, -n and leads to two cases.

Case I, n=0: Now A=0 is a repeated root of the 1nd1cnal equation. To get a
solutlon set A=n=0 and obtain the recurrence relation: j aj+aJ s=0lj=2, 3,

. from the co-efficient of s'™ in the above summation. Then, a; = -a;. 2/j
for _] 2, 3,4, ... . From this we easily find the even indexed terms 2 = [(-
1)'a0]/[2242 (2])] for j= 2, 3, 4, ... . The recurrence relation gives no
information about a,. However, upon settmg A=n=0 in the co-efficient of s*'
above, we get the co-efficient of s*' to be just a;, and hence conclude that
a;=0. From recurrence relation, then: a;= a; =as = a;= ... =0 and all odd-
indexed co-efficients are, therefore, zero. Thus, one solution is,

= Yi-0"ays” = agY 0 {[(-1Y)/[2%4>.. (21)]}s21—aozﬂ {CD2%GY )7
= aozj-o {[-DYVIGH T} (s/2)2.

When we choose a,=1, this solution is called the Bessel function of the first
kind of order zero, and this denoted Jy(s). Thus,

Jo(s) = T {[( DVIGY D2 = 1 - (/2% + (s2°4%) - (s%2°4%6%) + -
(s*/2%4%6°8%) - ... is a first solution of eqn. (36). A graph of R(r) = Jy(s) is
shown: :

e

- L0

Table 1 (next), and table 2 (next) gives some values of some positive roots of

the equation Jo(s) = 0 and Jo(s) for 0<s<10 respectively.

Zero)

Table 1: The First 30 Positive Roots of Jy(s) = 0 (in Increasing Order from

Root | Root | Root | Root | Root
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# | Value # | Value # | Value # | Value # | Value

1240483 |7 |21.21164 |13 |40.05843 | 19 | 58.90698 | 25 | 77.75602

2 15.52008 |8 |24.35247 |14 |43.19979 | 20 | 62.04846 | 26 | 80.89756

31863573 |9 |27.49348 | 15 |46.34119 | 21 | 65.18996 | 27 | 84.03909

4111.79153 | 10 | 30.63461 | 16 | 49.48261 | 22 | 68.33146 | 28 | 87.18063

5114.93092 | 11 | 33.77582 | 17 | 52.62405 | 23 | 71.47298 | 29 | 90.32217

6| 18.07106 | 12 | 36.91709 | 18 | 55.76551 | 24 | 74.61450 | 30 | 93.46371

Table 2: Some Values of R = Jy(s) for 0<s<10

# 1S | Ju(S) # |S | Ju(S) # |S | Ju(S) # S | Jy(S)

1 0 0 26 | 2.5 | - STEES0. - 76 | 7.5 | 0.266339
0.048384 0.177597

2 |0.1]0.997502 |27 ]|26|- 5215510 = 77 | 7.6 | 0.251602
0.096805 0.144335

3 [0.2]0.990025 |28 |2.7 |- 531552 | = 78 | 7.7 | 0.234559
0.142449 0.110290

4 10310977626 |29 2.8 |- 54 153]- 79 | 7.8 0.215408
0.185036 0.075803

S |04]0.960398 |30 | 2.9 |- 55154 - 80 | 7.9 |0.194362
0.224312 0.041210 | .

6 |0.5]0.938470 | 31 |3.0 |- 56 |55 - 81 8.0 | 0.171651
0.260052 5 0.006843

7 10.6]0.912005 |32 3.1 |- 57| 5.6 | 0.026971 | 82 | 8.1 | 0.147517
0.292064

8 |0.7]0.881201 (33 |3.2]- 58 |15.710.059920 | 83 | 8.2 | 0.122215
0.320188

9 |08 [0.846287 | 34 |3.3 |- 59 |5.8(0.091703 | 84 | 8.3 | 0.096006
0.344296

10| 0.9 | 0.807524 | 35 | 3.4 | - 60|590.122033 | 85 | 8.4 | 0.069157
0.364295 :

11]1.0]0.765198 | 36 | 3.5 | - 61 | 6.0|0.150645 | 86 | 8.5 | 0.041939

: 0.380182

12| 1.1 1 0.719622 | 37 | 3.6 | - 62| 6.10.177291 | 87 | 8.6 | 0.014623
0.391769

13112]0671133 |38 |3.7 |- 63620201747 | 88 | 8.7 |-
0.399230 0.012523

14| 1.3 | 0.620086 | 39 | 3.8 | - 64 | 630223812 |89 |88|-
0.402556 0.039234

15]1.4]0.566855 |40 | 3.9 | - 65| 6.4 0243310 |90 |89 |-
0.401826 0.065253

16 | 1.5]0.511828 |41 | 4.0 |- 66 | 6.50.260094 |91 | 9.0 |-
0.397150 0.090333

17 | 1.6 | 0.455402 | 42 | 4.1 | - 67| 6.6 0274043 |92 | 9.1 |-
0.388670 0.114239

18 1.7 10397985 |43 |42 |- 68| 6.7 |0.285065 |93 |[9.2 |-
0.376557 0.136748

19| 1.8 | 0.339986 |44 | 4.3 | - 69 | 6.8 | 0.293096 | 94 | 9.3 |-
0.361011 0.157655
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20 [ 1.9 0.281819 [ 45 | 4.4 70 16.910.298102 |95 |94 |-

0.342257 0.176772

211 2.0 10.223890 | 46 | 4.5 | - 7117.0 [ 0.300079 [ 96 |[9.5 |-
0.320543 0.193929

22 12.1(0.166607 | 47 | 4.6 | - 721 17.110.299051 | 97 (9.6 |-
0.296138 0.208979

23122]0.110362 | 48 | 4.7 | - 731 7.2 1 0.295071 |98 | 9.7|-
0.269331 0.221795

241 2.3 10.055540 | 49 | 4.8 | - 74 1 7.3 ]0.288217 |99 (9.8 |-
0.240425 0.232276

251 2.4 0.002508 | 50 | 4.9 | - 7517.4]0.278596 | 100 [ 9.9 | -
. 0.209738 0.240341

- |- - - |- - - |- - 101 | 10. | -
0.245936

There is also a second solution of Bessel’s zero order equation containing a
logarithm term. Omitting the details of calculation, we find a second solution:

Jos) = In(s) + (s%/2%) — (s*2%4%[1+(12)] + s%/(24%6>)[1+(1/2)+(1/3)] -
sY(224%6°8%) [ 1+(1/2)+(1/3)+(1/4)] + ... 5 P37R)

The eqn. (37A) is Neumann’s Bessel function of the second kind of order
zero and denoted as Yy(s). Thus the general solution of Bessel’s equation of
order zero is: R = CJy(s) + C,Y(s); 0<s<oo.

Case II: n = 1,2,3, ...: For this case, omitting details, which is similar to
those encountered in obtaining Jo(s), we get a solution: J,(s) = Y0 [
1Y/ (n+)!1}1(s/2)™> =[s"/{(2")n!}][1-
{22+ 1)} +{sY/(2* 2D(n+1)(n+2)} }- {s%/{2°B)(n+1)(n+2)(n+3)} }+...].

This is the Bessel function of the first kind of order n. A second, linearly
independent solution is:

Y, (8)=Iu()In(s)~(1/2)F 500" [{ (- D)) (/2 ™ Y- (1/2) Ko [ (-

LY/ 02)" W) Hp(n )], where w(m) = 1+ (1/2) + (1/3) + ...
+(1/m) and y(0) = 0. This is Neumann’s Bessel [Ref-5:p-377] function of the
second kind of order n.

Case 1 and 2 can now be combined and substituting n=0 in J,(s) and Y,(s) of
case 2 yields Jo(s) and Y(s). Thus, for n = 0,1,2,3, ..., the general solution of
Bessel equation is R = CJ,(s) + C,Y,(8).

It should be remarked here only that J,(s) and Y,(s) are oscillating functions
of their arguments, that both go to zero as s=kr —oo, and that J, is the
solution which is regular at r = 0, a point for which eqn. (36) has a
singularity. For real n and k, then the integrals are of the following form

@ (k).
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R) = Auukr) +]©(0)=C,Cos(nd)+ D,Sin(nb); | Z(z) = Exe** + Fye’
B, Ya(kr); k #0, n#0, = k70,
R(r) = Ar" +Br"; k=0, ®(0)=CH + D; n=0, Z(z) = E, + F; k=0.

If n and k are both zero, the solution of Laplace’s equation in cylindrical
coordinates becomes:
® =[A In(r) +B][C6 + D][E, + F] 2-(38):

Solutions for certain problems involving a long straight conductor or wire
(but not short cylindrical segment) can be worked out easily as electrostatic
potential (®) for these situations are independent of the coordinate z, and the
Laplace’s equation becomes:
Vo = (I/n)@en)@der)] + () D/e6%) =
0...(38A)

Substituting @ = Y(r)S(0) we get (by separating the variables)-
(/Y)[(d/dr)(x(dY/dr))] = - (1/8)(d*S/d6%) =k .... (38B);

where k is the (usual) separation constant. The 6-equation has solutions
sin(k'?0) and cos(k'?0). But if these solutions are to make sense physically,
each [S(0 )] must be a single-valued function of 0; thus:

sin(k"? (8 + 2m)) = sin(k'20), and cos(k'? (6 + 2m)) = cos(k"?).

That is, after 8 has gone through its full range from 0 (zero) to 2m, the
function must join smoothly to its value at 8 = 0. This requires n as non-
negative integers.

The r-equation, on the other hand, has solutions " or r" for non-zero n; and if
n = 0, then either Y(r) = In(r) or Y(r) = constant. Hence, the required
solutions of the Laplace’s equation, the so called zonal harmonics, are:

1 In(r) These functions form the fundamental (complete)

r"cos(nf) | r"cos(nd) | set of solutions for the variables r, ® in cylindrical

"sin(n) | rsin(n0) | coordinates, and the potential ®(r, 6) may be
developed as a superposition® of cylindrical
harmonics.

(G.) Solutions to Laplace’s Equation in Sperical Coordinates: The
Laplace’s equation in spherical coordinates [Ref-5: p-52] can be written as:

2 £ . : 5 ¥ ¢
This is because if @, ®,, ..., ®, are all solutions of Laplace’s equation, then their
linear combination is also a solution. We may superimpose two or more solutions of

Laplace’s equation in such a way that the resulting solution satifies a given set of
boundary conditions. '
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V2 D=(1/r*)(0/er)[r*(®/r)]+[1/(r’Sin6)][(8/00)Sin0(6d/60)]+[ 1/(r’Sin’8)](8°®/d¢>)
...(39),

where: r is radial direction, 6 is polar angle, and ¢ is azimuthal angle’.

It is intended first to find the solution for ® as an independent of azimuthal
angle, . Many interesting electrostatic field problems fall into this category.

Case 1: Zonal Harmonics [®#®(¢)] [Ref-5: p-55]: If ®#P(p), eqn. (39)
becomes: :

V2O=(1/r*)(8/6r)[r*(6®/r)]+[ 1/(r*Sin6)][(6/60)Sin0(6®/30)] ... (40)

Here, ®=®(r,0). The eqn. (40) can be solved by separation of two variables
as:

PD(r.0) = Z(r)P(0) | g (41)
Substituting eqn. (41) into eqn. (40) we get:

(P/?){(0/or)[r*(0Z/or)]}+[Z/(rSin)][(8/60){Sin6(6P/0)}] = 0
<(1/Z)[(d/dr){r*(dZ/dr)}] = -[1/{Psin()}](d/d6){Sin(6)(dp/dO)}
(42)"

It is revealed from the above that a function of r alone is equal to a function
of 0 alone. It is possible if and only if, both the functions are constants. Let
there exists some keR which satisfies the relation. The left side can be used to
solve for P =P(0):

[1/Sin(0)]{(d/d0)[Sin(0){dp/dO}]}+PK = 0 i g

? It should be noted that r and 0 have different meanings in cylindrical and spherical

coordinates. In spherical coordinates r is the magnitude of the radius vector from the

origin and 0 is the polar angle. In cylindrical coordinates, r is the perpendicular distance

from cylinder axis and 6 is the azimuthal angle about this axis.

* Partial derivatives have been replaced by total derivatives since Z and P are each
@D functions of one variable only: Z = Z(r), and P = P().
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This is the famous Legendre equation whose solutions are given by Legendre
polynomials by recursion:

(n+1)P,+(CosB) — (2n+1)(CosB)P,Cosb +nP,,_;(CosO) = 0
<> P,+1(Cos0) = [(2n+1)(CosB)P,Cosb - nP,_;(Cosh)]/(n+1)

The only solutions those physically make sense are for K = n(n+1), n is a
positive integer. The solutions (of the Legendre equation) for other values of
K are ill-behaved in the vicinity of 6 = 0, and 6 = = radians, becoming infinite
or even undefined; and can not be made to fit physical boundary conditions
and hence must be discarded. Thus, the solutions [Ref-5: p-376] are:

n | Py®) | n[P.0)]|n|Py0) n | P,(0)
01 1| CosB |2 | (1/2)[3Cos™® —]|3 | (1/2)[5Cos’0 —3Cosb], and so
1] on.

We now set K = n(n+1) explicitly for Z = Z(r) and get:
[1/Z(r)](d/dr)[r*{(d/dr)Z(r)} = n(n+1)

This gives two independent solutions: Z, = r*, ™. Thus, the solutions of
Laplace’s equation for @ = ®(r.,0); i.e., the zonal harmonics are:

® =1"P,(8), or r'"™'P,(0) (44)

where P,(6) is one of the polynomials listed in the above table, and n = 0, 1,
2, ... . The zonal harmonics form a complete 'set of functions. That is, a
general solution of Laplace’s equation may be constructed as a superposition
of these solutions’ provided the physical problem shows the appropriate
azimuthal symmetry. Several of the zonal harmonics are already known: one
of the n = 0 solutions, namely electrostatic potential ® = constant, is trivial
solution of Laplace’s equation, valid in any coordinate system; the zonal
harmonic ' is the potential of a point charge; and r cos(6) is the potential of
a dipole. Let us next consider the case where ® is dependent on ¢ i.e.,
azimuthal angle also.

Case II-Spherical Harmonics [® = ®(r,0,0)]: A product solution in the
fmn " 0(r.0.0) = Hin)HO)f(p) (45)

can be assumed in which the functions f; are real. By using equation (39) this
leads to the separation:

(Sin®0/f,)[d/dr {r’(df;/dr)}]+{(Sin8)/f>} {d/dB[Sin0{(df>)/d6} 1} +(1/f:)[(d*F)/dgp’]=0
...(46)

* See pertinent foot-note for cylindrical harmonics given earlier.
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Since the last term is a function only of ¢ whereas the first two terms are not,
it follows that:
(1/£)[(d*f3)/de*]= -m* =47

in which m must be an integer if the potential is to be single-valued. Thus,
fi(p) = {€"™’}; m = 0, 1, £2, ... . Substituting eqn. (47) into eqn. (46) and
division by Sin°0 gives: :

(l/ﬁ%(d/dr){rz(df./dr)}+ (1/[£(Sin0)]}(d/d0)[Sin0{(df:)/d0} -  m*/(Sin%6)=0
= (48)

Because only the first term of the above equation is a function of r, this term
must be equal to a constant kER. Let us designate k = n(n+1) for the same
reason as discussed above (i.e. for physically making sense). Thus-

(d/dr)[r*(df,/dr)] — n(n+1)f; = 0 ...  (49),and
(d/d6)[Sin()(df>/d6)] + [n(n+1)Sind — (m*/Sind)]f, =0  ...(50)

Eqn. (49) is readily solved and gives:
f,(r) = ar"+ br™"
sl

Splution of eqn. (50) is facilitated by making substitution u = Cos6 which
gives:

g (1 = v?)(d*fy/du®) — 2u(dfy/du) + [n(n+1) — {m*/(1-u®)}]f, = 0

(52)

The functions which satisfy this equation are once again the Legendre
functions and two independent solutions are normally designated P",(u) and
Q™,(u). The later has singularities at the poles 6 = 0, nand must be excluded
if the polar axis is part of the region of interest. Appendix includes a
discussion of the manner in which eqn. (52) is solved, together with a
development of the major properties of the function P™,(u), and only the
principal results will be stated here.

The assumption of a power series solution of eqn. (52) for the case m=0 leads
to the conclusion that, if n is an integer, f(u) can be expressed as a
polynomial which is well-behaved in the entire region —1<u<l and given by-

P,(u) = [1/(2"nH][(d"/du")(u*1)" b 5(53)

The first few of these are given earlier’. If all the positive integral values of n
afe included, Legendre polynomials generated by eqn. (53) constitute a

6 .
See between equations (43) and (44).
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complete orthogonal set in the interval [-1, 1] and for this reason, non-
integral values of n will not be considered.

For m # 0, the associated Legendre function P", satisfies eqn. (52), is given
by- :

P™ ()= (1-u)™[d"P,(u)/du™= ({(1-u})™}/2"nD][d™"{(u*-1)"}/du™™] ...
(54)

Since P,(u) is an nth-order polynomial, m can not exceed n in value. A
variety of recurrence formulas connecting associated Legendre functions
and/or their derivatives for different values of the indices is given in
Appendix, together with a list of the specific functions generated from eqn.
(54) for low values of m & n.

-

The associated Legendre functions are also orthogonal in [-1,1], the
normalization integral being-

[4"P"()P"(u)du = [{2(n+m)}!/{(2n+1)(n-m)} '3y e (39)

When eqn. (45) is expanded in terms of the solutions which have been found
for constituent functions, we get-

CI)(I\9sq:’)’:Zm=0"2n=0w[anrn'*_bnr-(wl )]pnmCose[CmCOS(m(p)+dein(m(p)]
...(56)

The combination p,"Cos8[C,Cos(me)+d,Sin(me)] is called a spherical
harmonic. Being orthogonal in both Cosf and ¢, it is suitable for the
expansion of the arbitrary functions of 6 and ¢ in spherical coordinates in
exactly the same way that a double Fourier series is used in two dimensions
in rectangular coordinates. APPENDIX ‘

The Associated Legendre Equation: The solution of the differential equation
[Ref-2: p-281, 325; Ref-5: p-57, 376],

- (1-ud)(dfy/dud) — 2u(dfy/du) + [n(n+]) —{mZ (1D} HE=0 ... (A1)

will be undertaken here. As a first step, we consider the case m = 0 which results
in the ordinary Legendre equation-

(1-u®)(d’g/du®) — 2u(dg/du) + n(n+l)g = 0
...(A2)
Let a solution to (A.2) be assumed in the form,
g=Y 0 [au""] ... (A.3)
in wl‘lich s is a constant. Then, dg/du = Y,~"[(s+p)au®""'] and d’g/du’ =
Do '[(s+p)(s+p-l)apu5+p’2]; and substitution of these terms in (A.2) gives:



Ramifications of Laplace’s Equation and Electrostatic Fields

Y=o [(s+p)(s+p-1)apu™™?] - Zp=2 [(s+p-2)(s+p-3)ap2u™™?] - 23" [(s+p-2)a.
s P2+ n(n+1)Y - [apu* "2 =0

" Since this result is to hold for all values of u, the co-efficient of each power of u
must separately equal zero and, therefore,
Ls(s-Dao =0 [ (s+Dsay = 0 [ (s+p)(stp-Dap = [(s+p-2)(s*p-1) — n(n+1)]ay, |

If s = 0, the first two of these conditions are satisfied and the third condition
becomes the recursion formula:

ap ~ -{[(n-p+2)(n+p-1))/p(p-1)}ap-
...(A4)
The solution to (A.2) can then be written-
g = agfl- {n(n+1)/’)'}u + {n(n- 2)(n+])(n+3)/4'}u - ...] tafu- {(n-
1)(n+2)/3!1}u’ +{(n-1)(n- 3)(n+2)(n+4)/5130° - ..] (A.S5)

For non-integral n both of the series in (A.5) converge except at u = =1. Since
one series is odd and the other even, they represent linearly independent
solutions of (A.2) so that (A.5) is a general solution provided that [u|<l. Nothing
more is added by choosing s = 1 since each choice leads to one of the series in
. (AS).
Ef n is an even integer, it is clear that the first series in (A.5) terminates and is
thus a polynomial, whereas if n is an odd integer the second series reduces to a
polynomial. If the arbitrary constants ay and a, are adjusted so as to give these
polynomials the value unity when u = 1, the Legendre polynomials are obtained,
the first few of which are:
Po(u) =1, Pl(u) u=Cosb, P(u) = (3/2)u* - 112 = (3/4)Cos26 + (1/4)
P3(u) = (5/2)u’ — (3/2)u = (5/8)Cos36 + (3/8)Cos8. etc.

These polynomials can also be generated from Rodrigues’ formula-
Puo(w) = [1/{2"(n!)} ](d"/du"){ (u* - 1)"} . (A6)
which may be verified by expansion.

For n an integer, the non-terminating series in (A.5), with the constant suitably
adjusted, is known as the Legendre function of the second kind, Q,(u). These
functions are characterized by singularities at u = =1 and must be excluded from
the solutions of physical problems in regions containing the polar axis. They will
not be considered here.

The Legendre polynomials P,(u) defined above satisfy (A.2) which may be
written as:

(1-u®)(d*P,/du?) — 2u(dP,/du) + n(n+1)P, = 0... (A.7)

If this equation is differentiated m times with respect to u, one obtains:
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(1-)(@du?) - 2(m+u(dh/du) + [n(n+l) — m@m+1)h = 0
AA8)

in which h(u) = d"P,/du™.
When one lets h(u) = (1-u®)™*fy(u), eqn. (A.8) transforms into (A.1). Thus,
H) =P, (u)= 1)) [d"P @)/du™] . © = (A9)
is a solution to the associated Legendre eqn. (A.1). The functions
P."(u) = [(1-u®)™(2"n!)][d"™/du" ™) (u® - 1)"] 50 Haa(ATLO)

are known as the associated Legendre functions of the first kind. Since P, is a
polynomial of order n, it follows that P,"(u) = 0 for m>n.

It is obvious that the functions P, (u) are identical with the polynomials P,(u)
previously listed. If one used (A.9) [Ref-5: p-376].

P, (u) = (1-u")"”* = Sin@ By = hes(cas) = Ty s
(3/2)Cos26

P,'(u) = 3u(1-u)"”* = (3/2)Sin26 Ps*(u) = 15u(1-u”) = (15/4)Cosh -
(15/4)Cos36

P;'(u) = (3/2)(5u” -1)(1-u®)"* = (3/8)Sin6 | P5’(u) = 15(1-u")"” = (45/4)Sind -

+(15/8)Sin30 (15/4)Sin36

A second generating function for the Legendre polynomials is given by the
expression: f(u.t) = [1-(2ut — £)]"* which can be expanded into the series:

flut) = 1 + [(12)/1!1]Qut — ) + [(1/2)(3/2)/2!](2ut — )+ ...+ [[(112)(3/2).
..{n-1)/2})/(n)]ut — )" + ...

If this is re-arranged as a power series in t one obtains:
flut) = 1 +ut + [{Bu’-1)2}t7] + [{(5u’-3u)2}t'] + ...

and the co-efficients of the different powers of t are recognized to be the

Legendre polynomials, so that-
(1-2ut +t2)"2 = 3, 4"t"Pa(u) .(A.11)

Differentiation of (A.11) with respect to t gives-

(u-t)/[(1-2ut +£)*?] = Zpo™nt"'Po(u) ...(A.12)
which can be written as: (u-t)Zy=0"t"Py(u) = (1-2ut +t*)Za=“nt" ' Py(u).
Equating co-efficients of t", one determines that-

(n+1)Pys1(u) — 2n+1)uP,(u) + nPy(u) =0 (A.13)
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This recurrence relation will permit the determination of any Legendre-.
polynomial if two successive ones are known. Differentiation of (A.11) with
respect to u yields-

/[(1-2ut+t%)*?] = Z,0"t"Py'(u) ...(A.19)

which can be re-arranged as: tZ,0"t"Py(u) = (1-2ut+t?)Z,="t"P,'(u). The co-
efficients of t" gives-
Ppi(u) = Po'(u) 22uPp'(u) + Poa'(u) ... (A.15)

Knowledge of the derivative of two successive Legendre polynomials will thus
permit determination of any other through the use of (A.15).

Alternatively, (A.14) can be re-arranged with the aid of (A.12) to give: tZ,— nt"™
'Pa(u) = (u-t)Z,=9"1"P,/(u) which yields the recursion formula-

nP,(u) = uP,'(u) - Py.i"(u) LeiCALT6)

from which the derivative of any Legendre polynomial can be determined if one
polynomial and its derivative are known.

Combination of (A.15) and (A.16) delivers the useful differentiation formula-
(1-u’)(dPy/du) = 0P, (u) — nuP,(u) ...  (A.17)

Recurrence relations for the associated Legendre [Ref-5: p-376] functions follow
readily with the aid of (A.10). Two of the more important formulas are-

(n-m+1)Py;™ — 2n +1)uP,™ + (n+m)P,.," = 0 e (AC1R)
(1-u®)(dP,™/du) = (n+m)Py.;™ — nuP,™ (A.19)

One of the most useful properties of the Legendre polynomials is their
orthogonality in the interval-—1<u<l. This can be established by returning to the
differential equation (A.7). The two polynomials Pj(u) and P,(u) satisfy this
equation in the forms- '
(d/du)[(1-u®)Py'(w)] + I(I+1)Py(u) = 0 (A.20)
(d/du)[(1-u®)P,'(u)] + n(n+1)Py(u) = 0
(A21)

Upon multiplying (A.20) and (A.21) by P,(u) and Py(u) respectively, subtracting,
and then integrating from —1 to +1, one obtains-

(-n)(Hn+ DL Pyu)Pa(u)du = [{(1-u)[Pa(w)P(w) — PP/ = 0
(A.22)

in which the right side of (D.22) has been achieved through integration by parts.
Therefore, i =
L1"Py(u)Py(u)du=0,1#0 oo (AP3)

and the Legendre polynomials are orthogonal.
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To determine the value of this integral if | = n, the generating function (D.11)
can be used. Squaring both sides and integrating with respect to u gives:

[ (1-2ut+2) 'du =], [Po(u) + tPy(u) + ...+ "Py(u)+ ...]2du, which becomes:
[(-1720){In(1-2ut+t)}].1" = Fueo "L "Po2(w)du,

with the reduction of the right side occurring by virtue of (A.23). Insertion of the
limits yields:
(AD[In{(1+t)/1-9}] = 2T u=0”[t*"/(20+1)]=T0=0""L.1 'Pu*(w)du,

in which the logarithmic function has been replaced by its series expansion.
Equating coefficients of like powers of t, one obtains-

[1'P.2(w)du = [2/(2n+1)] ...(A29)
The associated Legendre functions P/" and P,™, which satisfy-

(d/du)[(1-u®)(dP,™/du)] + [I(1+1) —{m¥/(1-u®)}]P/" = 0
(A.25)
" (d/du)[(1-u*)(dP,™/dw)] + [n(n+1) —{m*/(1-u?)}]P,"™ = 0
(A.26)
are also orthogonal in the same interval. This can be established by a repetition
of the foregoing procedure. If (A.25) and (A.26) are multiplied by P,™ and P|"
respectively, the difference taken, and the result integrated, the result is that-

[1'P"w)P,"()du = 0, 1# n R )
The normalization integral is:
L Pamw)Pdu = [, (1-u®)™(d"Py/du™)(d"Py/du")du. which reduces to-

L' P2 (w)Pdu = -[;' (@™'Pu/du™")[(d/du){(1 -)™(d"Py/du™)}]du ...

(A.28)
after mtegratlon by parts. If in (A.8) one replaces m by m-1 and multiplies

through by (1-u %)™ there results: |
(d/du)[(1-u®)™(d"pw/dum)]=-(n-m+1)(n+m)(1- )™ d™'P/du™").

Substitution of this expression in (A.28) gives-

[ Pa"(w)PPdu = (n-m+1)(n+m)L.; (1- u~)"‘ ‘(d’“ 'P. /du™ N(d@™'Py/du™ ')du
=(n+m)(n-m+1)[;'[P,™" (w)]*du .
(A29)

with the aid of (A.28). Use of the reduction formula (A.29) yields:

L' [P ()] du = [(n+m)Y/(n-m)!] [ [P, (u)]du.
Finally, ﬂi’tough the use of (A.24). we get-
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[1'Py"(w) P"(w)du = [(n+m)!/{(2n+1)(n-m)} |31
(A.30)

This result is of considerable importance since it provides the opportunity to
expand a function fy(u) in terms of associated Legendre polynomials with the
coefficients individually determinable from (A.30). This technique greatly
facilitates the solution of many boundary value problems.
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